Ergebnis für URL: http://www.gnu.org/software/gsl/doc/html/multiroots.html#algorithms-without-derivatives
   #[1]Index [2]Search [3]Multidimensional Minimization [4]One Dimensional
   Minimization

   [5]GSL
   2.8
   ____________________
     * [6]Introduction
     * [7]Using the Library
     * [8]Error Handling
     * [9]Mathematical Functions
     * [10]Complex Numbers
     * [11]Polynomials
     * [12]Special Functions
     * [13]Vectors and Matrices
     * [14]Permutations
     * [15]Combinations
     * [16]Multisets
     * [17]Sorting
     * [18]BLAS Support
     * [19]Linear Algebra
     * [20]Eigensystems
     * [21]Fast Fourier Transforms (FFTs)
     * [22]Numerical Integration
     * [23]Random Number Generation
     * [24]Quasi-Random Sequences
     * [25]Random Number Distributions
     * [26]Statistics
     * [27]Running Statistics
     * [28]Moving Window Statistics
     * [29]Digital Filtering
     * [30]Histograms
     * [31]N-tuples
     * [32]Monte Carlo Integration
     * [33]Simulated Annealing
     * [34]Ordinary Differential Equations
     * [35]Interpolation
     * [36]Numerical Differentiation
     * [37]Chebyshev Approximations
     * [38]Series Acceleration
     * [39]Wavelet Transforms
     * [40]Discrete Hankel Transforms
     * [41]One Dimensional Root-Finding
     * [42]One Dimensional Minimization
     * [43]Multidimensional Root-Finding
          + [44]Overview
          + [45]Initializing the Solver
          + [46]Providing the function to solve
          + [47]Iteration
          + [48]Search Stopping Parameters
          + [49]Algorithms using Derivatives
          + [50]Algorithms without Derivatives
          + [51]Examples
          + [52]References and Further Reading
     * [53]Multidimensional Minimization
     * [54]Linear Least-Squares Fitting
     * [55]Nonlinear Least-Squares Fitting
     * [56]Basis Splines
     * [57]Sparse Matrices
     * [58]Sparse BLAS Support
     * [59]Sparse Linear Algebra
     * [60]Physical Constants
     * [61]IEEE floating-point arithmetic
     * [62]Debugging Numerical Programs
     * [63]Contributors to GSL
     * [64]Autoconf Macros
     * [65]GSL CBLAS Library
     * [66]GNU General Public License
     * [67]GNU Free Documentation License

   [68]GSL
     * »
     * Multidimensional Root-Finding
     * [69]View page source

   [70]Next [71]Previous
     ____________________________________________________________________________

Multidimensional Root-Finding[72]¶

   This chapter describes functions for multidimensional root-finding (solving
   nonlinear systems with n equations in n unknowns). The library provides low level
   components for a variety of iterative solvers and convergence tests. These can be
   combined by the user to achieve the desired solution, with full access to the
   intermediate steps of the iteration. Each class of methods uses the same
   framework, so that you can switch between solvers at runtime without needing to
   recompile your program. Each instance of a solver keeps track of its own state,
   allowing the solvers to be used in multi-threaded programs. The solvers are based
   on the original Fortran library MINPACK.

   The header file gsl_multiroots.h contains prototypes for the multidimensional
   root finding functions and related declarations.

Overview[73]¶

   The problem of multidimensional root finding requires the simultaneous solution
   of n equations, f_i , in n variables, x_i ,

   f_i (x_1, \dots, x_n) = 0 \qquad\hbox{for}~i = 1 \dots n.

   In general there are no bracketing methods available for n dimensional systems,
   and no way of knowing whether any solutions exist. All algorithms proceed from an
   initial guess using a variant of the Newton iteration,

   x \to x' = x - J^{-1} f(x)

   where x , f are vector quantities and J is the Jacobian matrix J_{ij} = \partial
   f_i / \partial x_j . Additional strategies can be used to enlarge the region of
   convergence. These include requiring a decrease in the norm |f| on each step
   proposed by Newton's method, or taking steepest-descent steps in the direction of
   the negative gradient of |f| .

   Several root-finding algorithms are available within a single framework. The user
   provides a high-level driver for the algorithms, and the library provides the
   individual functions necessary for each of the steps. There are three main phases
   of the iteration. The steps are,
     * initialize solver state, s, for algorithm T
     * update s using the iteration T
     * test s for convergence, and repeat iteration if necessary

   The evaluation of the Jacobian matrix can be problematic, either because
   programming the derivatives is intractable or because computation of the n^2
   terms of the matrix becomes too expensive. For these reasons the algorithms
   provided by the library are divided into two classes according to whether the
   derivatives are available or not.

   The state for solvers with an analytic Jacobian matrix is held in a
   [74]gsl_multiroot_fdfsolver struct. The updating procedure requires both the
   function and its derivatives to be supplied by the user.

   The state for solvers which do not use an analytic Jacobian matrix is held in a
   [75]gsl_multiroot_fsolver struct. The updating procedure uses only function
   evaluations (not derivatives). The algorithms estimate the matrix J or J^{-1} by
   approximate methods.

Initializing the Solver[76]¶

   The following functions initialize a multidimensional solver, either with or
   without derivatives. The solver itself depends only on the dimension of the
   problem and the algorithm and can be reused for different problems.

   type gsl_multiroot_fsolver[77]¶
          This is a workspace for multidimensional root-finding without derivatives.

   type gsl_multiroot_fdfsolver[78]¶
          This is a workspace for multidimensional root-finding with derivatives.

   [79]gsl_multiroot_fsolver *gsl_multiroot_fsolver_alloc(const
          [80]gsl_multiroot_fsolver_type *T, size_t n)[81]¶
          This function returns a pointer to a newly allocated instance of a solver
          of type [82]T for a system of [83]n dimensions. For example, the following
          code creates an instance of a hybrid solver, to solve a 3-dimensional
          system of equations:

const gsl_multiroot_fsolver_type * T = gsl_multiroot_fsolver_hybrid;
gsl_multiroot_fsolver * s = gsl_multiroot_fsolver_alloc (T, 3);

          If there is insufficient memory to create the solver then the function
          returns a null pointer and the error handler is invoked with an error code
          of [84]GSL_ENOMEM.

   [85]gsl_multiroot_fdfsolver *gsl_multiroot_fdfsolver_alloc(const
          [86]gsl_multiroot_fdfsolver_type *T, size_t n)[87]¶
          This function returns a pointer to a newly allocated instance of a
          derivative solver of type [88]T for a system of [89]n dimensions. For
          example, the following code creates an instance of a Newton-Raphson
          solver, for a 2-dimensional system of equations:

const gsl_multiroot_fdfsolver_type * T = gsl_multiroot_fdfsolver_newton;
gsl_multiroot_fdfsolver * s = gsl_multiroot_fdfsolver_alloc (T, 2);

          If there is insufficient memory to create the solver then the function
          returns a null pointer and the error handler is invoked with an error code
          of [90]GSL_ENOMEM.

   int gsl_multiroot_fsolver_set([91]gsl_multiroot_fsolver *s,
          [92]gsl_multiroot_function *f, const [93]gsl_vector *x)[94]¶

   int gsl_multiroot_fdfsolver_set([95]gsl_multiroot_fdfsolver *s,
          [96]gsl_multiroot_function_fdf *fdf, const [97]gsl_vector *x)[98]¶
          These functions set, or reset, an existing solver [99]s to use the
          function f or function and derivative [100]fdf, and the initial guess
          [101]x. Note that the initial position is copied from [102]x, this
          argument is not modified by subsequent iterations.

   void gsl_multiroot_fsolver_free([103]gsl_multiroot_fsolver *s)[104]¶

   void gsl_multiroot_fdfsolver_free([105]gsl_multiroot_fdfsolver *s)[106]¶
          These functions free all the memory associated with the solver [107]s.

   const char *gsl_multiroot_fsolver_name(const [108]gsl_multiroot_fsolver *s)[109]¶

   const char *gsl_multiroot_fdfsolver_name(const [110]gsl_multiroot_fdfsolver
          *s)[111]¶
          These functions return a pointer to the name of the solver. For example:

printf ("s is a '%s' solver\n", gsl_multiroot_fdfsolver_name (s));

          would print something like s is a 'newton' solver.

Providing the function to solve[112]¶

   You must provide n functions of n variables for the root finders to operate on.
   In order to allow for general parameters the functions are defined by the
   following data types:

   type gsl_multiroot_function[113]¶
          This data type defines a general system of functions with parameters.

          int (* f) (const gsl_vector * x, void * params, gsl_vector * f)

     this function should store the vector result f(x,params) in f for argument x
     and parameters params, returning an appropriate error code if the function
     cannot be computed.

          size_t n

     the dimension of the system, i.e. the number of components of the vectors x
     and f.

          void * params

     a pointer to the parameters of the function.

   Here is an example using Powell's test function,

   f_1(x) &= A x_0 x_1 - 1 \\ f_2(x) &= \exp(-x_0) + \exp(-x_1) - (1 + 1/A)

   with A = 10^4 . The following code defines a [114]gsl_multiroot_function system F
   which you could pass to a solver:
struct powell_params { double A; };

int
powell (gsl_vector * x, void * p, gsl_vector * f) {
   struct powell_params * params
     = (struct powell_params *)p;
   const double A = (params->A);
   const double x0 = gsl_vector_get(x,0);
   const double x1 = gsl_vector_get(x,1);

   gsl_vector_set (f, 0, A * x0 * x1 - 1);
   gsl_vector_set (f, 1, (exp(-x0) + exp(-x1)
                          - (1.0 + 1.0/A)));
   return GSL_SUCCESS
}

gsl_multiroot_function F;
struct powell_params params = { 10000.0 };

F.f = &powell;
F.n = 2;
F.params = &params;

   type gsl_multiroot_function_fdf[115]¶
          This data type defines a general system of functions with parameters and
          the corresponding Jacobian matrix of derivatives,

          int (* f) (const gsl_vector * x, void * params, gsl_vector * f)

     this function should store the vector result f(x,params) in f for argument x
     and parameters params, returning an appropriate error code if the function
     cannot be computed.

          int (* df) (const gsl_vector * x, void * params, gsl_matrix * J)

     this function should store the n-by-n matrix result
     J_{ij} = \partial f_i(x,\hbox{\it params}) / \partial x_j
     in J for argument x and parameters params, returning an appropriate error code
     if the function cannot be computed.

          int (* fdf) (const gsl_vector * x, void * params, gsl_vector * f,
          gsl_matrix * J)

     This function should set the values of the f and J as above, for arguments x
     and parameters params. This function provides an optimization of the separate
     functions for f(x) and J(x) --it is always faster to compute the function and
     its derivative at the same time.

          size_t n

     the dimension of the system, i.e. the number of components of the vectors x
     and f.

          void * params

     a pointer to the parameters of the function.

   The example of Powell's test function defined above can be extended to include
   analytic derivatives using the following code:
int
powell_df (gsl_vector * x, void * p, gsl_matrix * J)
{
   struct powell_params * params
     = (struct powell_params *)p;
   const double A = (params->A);
   const double x0 = gsl_vector_get(x,0);
   const double x1 = gsl_vector_get(x,1);
   gsl_matrix_set (J, 0, 0, A * x1);
   gsl_matrix_set (J, 0, 1, A * x0);
   gsl_matrix_set (J, 1, 0, -exp(-x0));
   gsl_matrix_set (J, 1, 1, -exp(-x1));
   return GSL_SUCCESS
}

int
powell_fdf (gsl_vector * x, void * p,
            gsl_matrix * f, gsl_matrix * J) {
   struct powell_params * params
     = (struct powell_params *)p;
   const double A = (params->A);
   const double x0 = gsl_vector_get(x,0);
   const double x1 = gsl_vector_get(x,1);

   const double u0 = exp(-x0);
   const double u1 = exp(-x1);

   gsl_vector_set (f, 0, A * x0 * x1 - 1);
   gsl_vector_set (f, 1, u0 + u1 - (1 + 1/A));

   gsl_matrix_set (J, 0, 0, A * x1);
   gsl_matrix_set (J, 0, 1, A * x0);
   gsl_matrix_set (J, 1, 0, -u0);
   gsl_matrix_set (J, 1, 1, -u1);
   return GSL_SUCCESS
}

gsl_multiroot_function_fdf FDF;

FDF.f = &powell_f;
FDF.df = &powell_df;
FDF.fdf = &powell_fdf;
FDF.n = 2;
FDF.params = 0;

   Note that the function powell_fdf is able to reuse existing terms from the
   function when calculating the Jacobian, thus saving time.

Iteration[116]¶

   The following functions drive the iteration of each algorithm. Each function
   performs one iteration to update the state of any solver of the corresponding
   type. The same functions work for all solvers so that different methods can be
   substituted at runtime without modifications to the code.

   int gsl_multiroot_fsolver_iterate([117]gsl_multiroot_fsolver *s)[118]¶

   int gsl_multiroot_fdfsolver_iterate([119]gsl_multiroot_fdfsolver *s)[120]¶
          These functions perform a single iteration of the solver [121]s. If the
          iteration encounters an unexpected problem then an error code will be
          returned,

          GSL_EBADFUNC

     the iteration encountered a singular point where the function or its
     derivative evaluated to Inf or NaN.

          GSL_ENOPROG

     the iteration is not making any progress, preventing the algorithm from
     continuing.

   The solver maintains a current best estimate of the root s->x and its function
   value s->f at all times. This information can be accessed with the following
   auxiliary functions,

   [122]gsl_vector *gsl_multiroot_fsolver_root(const [123]gsl_multiroot_fsolver
          *s)[124]¶

   [125]gsl_vector *gsl_multiroot_fdfsolver_root(const [126]gsl_multiroot_fdfsolver
          *s)[127]¶
          These functions return the current estimate of the root for the solver
          [128]s, given by s->x.

   [129]gsl_vector *gsl_multiroot_fsolver_f(const [130]gsl_multiroot_fsolver
          *s)[131]¶

   [132]gsl_vector *gsl_multiroot_fdfsolver_f(const [133]gsl_multiroot_fdfsolver
          *s)[134]¶
          These functions return the function value f(x) at the current estimate of
          the root for the solver [135]s, given by s->f.

   [136]gsl_vector *gsl_multiroot_fsolver_dx(const [137]gsl_multiroot_fsolver
          *s)[138]¶

   [139]gsl_vector *gsl_multiroot_fdfsolver_dx(const [140]gsl_multiroot_fdfsolver
          *s)[141]¶
          These functions return the last step dx taken by the solver [142]s, given
          by s->dx.

Search Stopping Parameters[143]¶

   A root finding procedure should stop when one of the following conditions is
   true:
     * A multidimensional root has been found to within the user-specified
       precision.
     * A user-specified maximum number of iterations has been reached.
     * An error has occurred.

   The handling of these conditions is under user control. The functions below allow
   the user to test the precision of the current result in several standard ways.

   int gsl_multiroot_test_delta(const [144]gsl_vector *dx, const [145]gsl_vector *x,
          double epsabs, double epsrel)[146]¶
          This function tests for the convergence of the sequence by comparing the
          last step [147]dx with the absolute error [148]epsabs and relative error
          [149]epsrel to the current position [150]x. The test returns GSL_SUCCESS
          if the following condition is achieved,

          |dx_i| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, |x_i|

          for each component of [151]x and returns GSL_CONTINUE otherwise.

   int gsl_multiroot_test_residual(const [152]gsl_vector *f, double epsabs)[153]¶
          This function tests the residual value [154]f against the absolute error
          bound [155]epsabs. The test returns GSL_SUCCESS if the following condition
          is achieved,

          \sum_i |f_i| < \hbox{\it epsabs}

          and returns GSL_CONTINUE otherwise. This criterion is suitable for
          situations where the precise location of the root, x , is unimportant
          provided a value can be found where the residual is small enough.

Algorithms using Derivatives[156]¶

   The root finding algorithms described in this section make use of both the
   function and its derivative. They require an initial guess for the location of
   the root, but there is no absolute guarantee of convergence--the function must be
   suitable for this technique and the initial guess must be sufficiently close to
   the root for it to work. When the conditions are satisfied then convergence is
   quadratic.

   type gsl_multiroot_fdfsolver_type[157]¶
          The following are available algorithms for minimizing functions using
          derivatives.

        [158]gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridsj[159]¶
                This is a modified version of Powell's Hybrid method as implemented
                in the HYBRJ algorithm in MINPACK. Minpack was written by Jorge J.
                Moré, Burton S. Garbow and Kenneth E. Hillstrom. The Hybrid
                algorithm retains the fast convergence of Newton's method but will
                also reduce the residual when Newton's method is unreliable.

                The algorithm uses a generalized trust region to keep each step
                under control. In order to be accepted a proposed new position x'
                must satisfy the condition |D (x' - x)| < \delta , where D is a
                diagonal scaling matrix and \delta is the size of the trust region.
                The components of D are computed internally, using the column norms
                of the Jacobian to estimate the sensitivity of the residual to each
                component of x . This improves the behavior of the algorithm for
                badly scaled functions.

                On each iteration the algorithm first determines the standard Newton
                step by solving the system J dx = - f . If this step falls inside
                the trust region it is used as a trial step in the next stage. If
                not, the algorithm uses the linear combination of the Newton and
                gradient directions which is predicted to minimize the norm of the
                function while staying inside the trust region,

                dx = - \alpha J^{-1} f(x) - \beta \nabla |f(x)|^2

                This combination of Newton and gradient directions is referred to as
                a dogleg step.

                The proposed step is now tested by evaluating the function at the
                resulting point, x' . If the step reduces the norm of the function
                sufficiently then it is accepted and size of the trust region is
                increased. If the proposed step fails to improve the solution then
                the size of the trust region is decreased and another trial step is
                computed.

                The speed of the algorithm is increased by computing the changes to
                the Jacobian approximately, using a rank-1 update. If two successive
                attempts fail to reduce the residual then the full Jacobian is
                recomputed. The algorithm also monitors the progress of the solution
                and returns an error if several steps fail to make any improvement,

                GSL_ENOPROG

     the iteration is not making any progress, preventing the algorithm from
     continuing.

                GSL_ENOPROGJ

     re-evaluations of the Jacobian indicate that the iteration is not making any
     progress, preventing the algorithm from continuing.

        [160]gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridj[161]¶
                This algorithm is an unscaled version of HYBRIDSJ. The steps are
                controlled by a spherical trust region |x' - x| < \delta , instead
                of a generalized region. This can be useful if the generalized
                region estimated by HYBRIDSJ is inappropriate.

        [162]gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_newton[163]¶
                Newton's Method is the standard root-polishing algorithm. The
                algorithm begins with an initial guess for the location of the
                solution. On each iteration a linear approximation to the function F
                is used to estimate the step which will zero all the components of
                the residual. The iteration is defined by the following sequence,

                x \to x' = x - J^{-1} f(x)

                where the Jacobian matrix J is computed from the derivative
                functions provided by f. The step dx is obtained by solving the
                linear system,

                J dx = - f(x)

                using LU decomposition. If the Jacobian matrix is singular, an error
                code of [164]GSL_EDOM is returned.

        [165]gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_gnewton[166]¶
                This is a modified version of Newton's method which attempts to
                improve global convergence by requiring every step to reduce the
                Euclidean norm of the residual, |f(x)| . If the Newton step leads to
                an increase in the norm then a reduced step of relative size,

                t = (\sqrt{1 + 6 r} - 1) / (3 r)

                is proposed, with r being the ratio of norms |f(x')|^2/|f(x)|^2 .
                This procedure is repeated until a suitable step size is found.

Algorithms without Derivatives[167]¶

   The algorithms described in this section do not require any derivative
   information to be supplied by the user. Any derivatives needed are approximated
   by finite differences. Note that if the finite-differencing step size chosen by
   these routines is inappropriate, an explicit user-supplied numerical derivative
   can always be used with the algorithms described in the previous section.

   type gsl_multiroot_fsolver_type[168]¶
          The following are available algorithms for minimizing functions without
          derivatives.

        [169]gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_hybrids[170]¶
                This is a version of the Hybrid algorithm which replaces calls to
                the Jacobian function by its finite difference approximation. The
                finite difference approximation is computed using
                gsl_multiroots_fdjac() with a relative step size of
                GSL_SQRT_DBL_EPSILON. Note that this step size will not be suitable
                for all problems.

        [171]gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_hybrid[172]¶
                This is a finite difference version of the Hybrid algorithm without
                internal scaling.

        [173]gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_dnewton[174]¶
                The discrete Newton algorithm is the simplest method of solving a
                multidimensional system. It uses the Newton iteration

                x \to x - J^{-1} f(x)

                where the Jacobian matrix J is approximated by taking finite
                differences of the function f. The approximation scheme used by this
                implementation is,

                J_{ij} = (f_i(x + \delta_j) - f_i(x)) / \delta_j

                where \delta_j is a step of size \sqrt\epsilon |x_j| with \epsilon
                being the machine precision ( \epsilon \approx 2.22 \times 10^{-16}
                ). The order of convergence of Newton's algorithm is quadratic, but
                the finite differences require n^2 function evaluations on each
                iteration. The algorithm may become unstable if the finite
                differences are not a good approximation to the true derivatives.

        [175]gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_broyden[176]¶
                The Broyden algorithm is a version of the discrete Newton algorithm
                which attempts to avoids the expensive update of the Jacobian matrix
                on each iteration. The changes to the Jacobian are also
                approximated, using a rank-1 update,

                J^{-1} \to J^{-1} - (J^{-1} df - dx) dx^T J^{-1} / dx^T J^{-1} df

                where the vectors dx and df are the changes in x and f . On the
                first iteration the inverse Jacobian is estimated using finite
                differences, as in the discrete Newton algorithm.

                This approximation gives a fast update but is unreliable if the
                changes are not small, and the estimate of the inverse Jacobian
                becomes worse as time passes. The algorithm has a tendency to become
                unstable unless it starts close to the root. The Jacobian is
                refreshed if this instability is detected (consult the source for
                details).

                This algorithm is included only for demonstration purposes, and is
                not recommended for serious use.

Examples[177]¶

   The multidimensional solvers are used in a similar way to the one-dimensional
   root finding algorithms. This first example demonstrates the HYBRIDS
   scaled-hybrid algorithm, which does not require derivatives. The program solves
   the Rosenbrock system of equations,

   f_1 (x, y) &= a (1 - x) \\ f_2 (x, y) &= b (y - x^2)

   with a = 1, b = 10 . The solution of this system lies at (x,y) = (1,1) in a
   narrow valley.

   The first stage of the program is to define the system of equations:
#include 
#include 
#include 
#include 

struct rparams
  {
    double a;
    double b;
  };

int
rosenbrock_f (const gsl_vector * x, void *params,
              gsl_vector * f)
{
  double a = ((struct rparams *) params)->a;
  double b = ((struct rparams *) params)->b;

  const double x0 = gsl_vector_get (x, 0);
  const double x1 = gsl_vector_get (x, 1);

  const double y0 = a * (1 - x0);
  const double y1 = b * (x1 - x0 * x0);

  gsl_vector_set (f, 0, y0);
  gsl_vector_set (f, 1, y1);

  return GSL_SUCCESS;
}

   The main program begins by creating the function object f, with the arguments
   (x,y) and parameters (a,b). The solver s is initialized to use this function,
   with the gsl_multiroot_fsolver_hybrids method:
int
main (void)
{
  const gsl_multiroot_fsolver_type *T;
  gsl_multiroot_fsolver *s;

  int status;
  size_t i, iter = 0;

  const size_t n = 2;
  struct rparams p = {1.0, 10.0};
  gsl_multiroot_function f = {&rosenbrock_f, n, &p};

  double x_init[2] = {-10.0, -5.0};
  gsl_vector *x = gsl_vector_alloc (n);

  gsl_vector_set (x, 0, x_init[0]);
  gsl_vector_set (x, 1, x_init[1]);

  T = gsl_multiroot_fsolver_hybrids;
  s = gsl_multiroot_fsolver_alloc (T, 2);
  gsl_multiroot_fsolver_set (s, &f, x);

  print_state (iter, s);

  do
    {
      iter++;
      status = gsl_multiroot_fsolver_iterate (s);

      print_state (iter, s);

      if (status)   /* check if solver is stuck */
        break;

      status =
        gsl_multiroot_test_residual (s->f, 1e-7);
    }
  while (status == GSL_CONTINUE && iter < 1000);

  printf ("status = %s\n", gsl_strerror (status));

  gsl_multiroot_fsolver_free (s);
  gsl_vector_free (x);
  return 0;
}

   Note that it is important to check the return status of each solver step, in case
   the algorithm becomes stuck. If an error condition is detected, indicating that
   the algorithm cannot proceed, then the error can be reported to the user, a new
   starting point chosen or a different algorithm used.

   The intermediate state of the solution is displayed by the following function.
   The solver state contains the vector s->x which is the current position, and the
   vector s->f with corresponding function values:
int
print_state (size_t iter, gsl_multiroot_fsolver * s)
{
  printf ("iter = %3u x = % .3f % .3f "
          "f(x) = % .3e % .3e\n",
          iter,
          gsl_vector_get (s->x, 0),
          gsl_vector_get (s->x, 1),
          gsl_vector_get (s->f, 0),
          gsl_vector_get (s->f, 1));
}

   Here are the results of running the program. The algorithm is started at (-10,-5)
   far from the solution. Since the solution is hidden in a narrow valley the
   earliest steps follow the gradient of the function downhill, in an attempt to
   reduce the large value of the residual. Once the root has been approximately
   located, on iteration 8, the Newton behavior takes over and convergence is very
   rapid:
iter =  0 x = -10.000  -5.000  f(x) = 1.100e+01 -1.050e+03
iter =  1 x = -10.000  -5.000  f(x) = 1.100e+01 -1.050e+03
iter =  2 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
iter =  3 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
iter =  4 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
iter =  5 x =  -1.274  -5.680  f(x) = 2.274e+00 -7.302e+01
iter =  6 x =  -1.274  -5.680  f(x) = 2.274e+00 -7.302e+01
iter =  7 x =   0.249   0.298  f(x) = 7.511e-01  2.359e+00
iter =  8 x =   0.249   0.298  f(x) = 7.511e-01  2.359e+00
iter =  9 x =   1.000   0.878  f(x) = 1.268e-10 -1.218e+00
iter = 10 x =   1.000   0.989  f(x) = 1.124e-11 -1.080e-01
iter = 11 x =   1.000   1.000  f(x) = 0.000e+00  0.000e+00
status = success

   Note that the algorithm does not update the location on every iteration. Some
   iterations are used to adjust the trust-region parameter, after trying a step
   which was found to be divergent, or to recompute the Jacobian, when poor
   convergence behavior is detected.

   The next example program adds derivative information, in order to accelerate the
   solution. There are two derivative functions rosenbrock_df and rosenbrock_fdf.
   The latter computes both the function and its derivative simultaneously. This
   allows the optimization of any common terms. For simplicity we substitute calls
   to the separate f and df functions at this point in the code below:
int
rosenbrock_df (const gsl_vector * x, void *params,
               gsl_matrix * J)
{
  const double a = ((struct rparams *) params)->a;
  const double b = ((struct rparams *) params)->b;

  const double x0 = gsl_vector_get (x, 0);

  const double df00 = -a;
  const double df01 = 0;
  const double df10 = -2 * b  * x0;
  const double df11 = b;

  gsl_matrix_set (J, 0, 0, df00);
  gsl_matrix_set (J, 0, 1, df01);
  gsl_matrix_set (J, 1, 0, df10);
  gsl_matrix_set (J, 1, 1, df11);

  return GSL_SUCCESS;
}

int
rosenbrock_fdf (const gsl_vector * x, void *params,
                gsl_vector * f, gsl_matrix * J)
{
  rosenbrock_f (x, params, f);
  rosenbrock_df (x, params, J);

  return GSL_SUCCESS;
}

   The main program now makes calls to the corresponding fdfsolver versions of the
   functions:
int
main (void)
{
  const gsl_multiroot_fdfsolver_type *T;
  gsl_multiroot_fdfsolver *s;

  int status;
  size_t i, iter = 0;

  const size_t n = 2;
  struct rparams p = {1.0, 10.0};
  gsl_multiroot_function_fdf f = {&rosenbrock_f,
                                  &rosenbrock_df,
                                  &rosenbrock_fdf,
                                  n, &p};

  double x_init[2] = {-10.0, -5.0};
  gsl_vector *x = gsl_vector_alloc (n);

  gsl_vector_set (x, 0, x_init[0]);
  gsl_vector_set (x, 1, x_init[1]);

  T = gsl_multiroot_fdfsolver_gnewton;
  s = gsl_multiroot_fdfsolver_alloc (T, n);
  gsl_multiroot_fdfsolver_set (s, &f, x);

  print_state (iter, s);

  do
    {
      iter++;

      status = gsl_multiroot_fdfsolver_iterate (s);

      print_state (iter, s);

      if (status)
        break;

      status = gsl_multiroot_test_residual (s->f, 1e-7);
    }
  while (status == GSL_CONTINUE && iter < 1000);

  printf ("status = %s\n", gsl_strerror (status));

  gsl_multiroot_fdfsolver_free (s);
  gsl_vector_free (x);
  return 0;
}

   The addition of derivative information to the gsl_multiroot_fsolver_hybrids
   solver does not make any significant difference to its behavior, since it able to
   approximate the Jacobian numerically with sufficient accuracy. To illustrate the
   behavior of a different derivative solver we switch to
   gsl_multiroot_fdfsolver_gnewton. This is a traditional Newton solver with the
   constraint that it scales back its step if the full step would lead "uphill".
   Here is the output for the gsl_multiroot_fdfsolver_gnewton algorithm:
iter = 0 x = -10.000  -5.000 f(x) =  1.100e+01 -1.050e+03
iter = 1 x =  -4.231 -65.317 f(x) =  5.231e+00 -8.321e+02
iter = 2 x =   1.000 -26.358 f(x) = -8.882e-16 -2.736e+02
iter = 3 x =   1.000   1.000 f(x) = -2.220e-16 -4.441e-15
status = success

   The convergence is much more rapid, but takes a wide excursion out to the point
   (-4.23,-65.3) . This could cause the algorithm to go astray in a realistic
   application. The hybrid algorithm follows the downhill path to the solution more
   reliably.

References and Further Reading[178]¶

   The original version of the Hybrid method is described in the following articles
   by Powell,
     * M.J.D. Powell, "A Hybrid Method for Nonlinear Equations" (Chap 6, p 87-114)
       and "A Fortran Subroutine for Solving systems of Nonlinear Algebraic
       Equations" (Chap 7, p 115-161), in Numerical Methods for Nonlinear Algebraic
       Equations, P. Rabinowitz, editor. Gordon and Breach, 1970.

   The following papers are also relevant to the algorithms described in this
   section,
     * J.J. Moré, M.Y. Cosnard, "Numerical Solution of Nonlinear Equations", ACM
       Transactions on Mathematical Software, Vol 5, No 1, (1979), p 64-85
     * C.G. Broyden, "A Class of Methods for Solving Nonlinear Simultaneous
       Equations", Mathematics of Computation, Vol 19 (1965), p 577-593
     * J.J. Moré, B.S. Garbow, K.E. Hillstrom, "Testing Unconstrained Optimization
       Software", ACM Transactions on Mathematical Software, Vol 7, No 1 (1981), p
       17-41

   [179]Next [180]Previous
     ____________________________________________________________________________

   © Copyright 1996-2024 The GSL Team.
   Built with [181]Sphinx using a [182]theme provided by [183]Read the Docs.

References

   Visible links:
   1. http://www.gnu.org/software/gsl/doc/html/genindex.html
   2. http://www.gnu.org/software/gsl/doc/html/search.html
   3. http://www.gnu.org/software/gsl/doc/html/multimin.html
   4. http://www.gnu.org/software/gsl/doc/html/min.html
   5. http://www.gnu.org/software/gsl/doc/html/index.html
   6. http://www.gnu.org/software/gsl/doc/html/intro.html
   7. http://www.gnu.org/software/gsl/doc/html/usage.html
   8. http://www.gnu.org/software/gsl/doc/html/err.html
   9. http://www.gnu.org/software/gsl/doc/html/math.html
  10. http://www.gnu.org/software/gsl/doc/html/complex.html
  11. http://www.gnu.org/software/gsl/doc/html/poly.html
  12. http://www.gnu.org/software/gsl/doc/html/specfunc.html
  13. http://www.gnu.org/software/gsl/doc/html/vectors.html
  14. http://www.gnu.org/software/gsl/doc/html/permutation.html
  15. http://www.gnu.org/software/gsl/doc/html/combination.html
  16. http://www.gnu.org/software/gsl/doc/html/multiset.html
  17. http://www.gnu.org/software/gsl/doc/html/sort.html
  18. http://www.gnu.org/software/gsl/doc/html/blas.html
  19. http://www.gnu.org/software/gsl/doc/html/linalg.html
  20. http://www.gnu.org/software/gsl/doc/html/eigen.html
  21. http://www.gnu.org/software/gsl/doc/html/fft.html
  22. http://www.gnu.org/software/gsl/doc/html/integration.html
  23. http://www.gnu.org/software/gsl/doc/html/rng.html
  24. http://www.gnu.org/software/gsl/doc/html/qrng.html
  25. http://www.gnu.org/software/gsl/doc/html/randist.html
  26. http://www.gnu.org/software/gsl/doc/html/statistics.html
  27. http://www.gnu.org/software/gsl/doc/html/rstat.html
  28. http://www.gnu.org/software/gsl/doc/html/movstat.html
  29. http://www.gnu.org/software/gsl/doc/html/filter.html
  30. http://www.gnu.org/software/gsl/doc/html/histogram.html
  31. http://www.gnu.org/software/gsl/doc/html/ntuple.html
  32. http://www.gnu.org/software/gsl/doc/html/montecarlo.html
  33. http://www.gnu.org/software/gsl/doc/html/siman.html
  34. http://www.gnu.org/software/gsl/doc/html/ode-initval.html
  35. http://www.gnu.org/software/gsl/doc/html/interp.html
  36. http://www.gnu.org/software/gsl/doc/html/diff.html
  37. http://www.gnu.org/software/gsl/doc/html/cheb.html
  38. http://www.gnu.org/software/gsl/doc/html/sum.html
  39. http://www.gnu.org/software/gsl/doc/html/dwt.html
  40. http://www.gnu.org/software/gsl/doc/html/dht.html
  41. http://www.gnu.org/software/gsl/doc/html/roots.html
  42. http://www.gnu.org/software/gsl/doc/html/min.html
  43. http://www.gnu.org/software/gsl/doc/html/multiroots.html
  44. http://www.gnu.org/software/gsl/doc/html/multiroots.html#overview
  45. http://www.gnu.org/software/gsl/doc/html/multiroots.html#initializing-the-solver
  46. http://www.gnu.org/software/gsl/doc/html/multiroots.html#providing-the-function-to-solve
  47. http://www.gnu.org/software/gsl/doc/html/multiroots.html#iteration
  48. http://www.gnu.org/software/gsl/doc/html/multiroots.html#search-stopping-parameters
  49. http://www.gnu.org/software/gsl/doc/html/multiroots.html#algorithms-using-derivatives
  50. http://www.gnu.org/software/gsl/doc/html/multiroots.html#algorithms-without-derivatives
  51. http://www.gnu.org/software/gsl/doc/html/multiroots.html#examples
  52. http://www.gnu.org/software/gsl/doc/html/multiroots.html#references-and-further-reading
  53. http://www.gnu.org/software/gsl/doc/html/multimin.html
  54. http://www.gnu.org/software/gsl/doc/html/lls.html
  55. http://www.gnu.org/software/gsl/doc/html/nls.html
  56. http://www.gnu.org/software/gsl/doc/html/bspline.html
  57. http://www.gnu.org/software/gsl/doc/html/spmatrix.html
  58. http://www.gnu.org/software/gsl/doc/html/spblas.html
  59. http://www.gnu.org/software/gsl/doc/html/splinalg.html
  60. http://www.gnu.org/software/gsl/doc/html/const.html
  61. http://www.gnu.org/software/gsl/doc/html/ieee754.html
  62. http://www.gnu.org/software/gsl/doc/html/debug.html
  63. http://www.gnu.org/software/gsl/doc/html/contrib.html
  64. http://www.gnu.org/software/gsl/doc/html/autoconf.html
  65. http://www.gnu.org/software/gsl/doc/html/cblas.html
  66. http://www.gnu.org/software/gsl/doc/html/gpl.html
  67. http://www.gnu.org/software/gsl/doc/html/fdl.html
  68. http://www.gnu.org/software/gsl/doc/html/index.html
  69. http://www.gnu.org/software/gsl/doc/html/_sources/multiroots.rst.txt
  70. http://www.gnu.org/software/gsl/doc/html/multimin.html
  71. http://www.gnu.org/software/gsl/doc/html/min.html
  72. http://www.gnu.org/software/gsl/doc/html/multiroots.html#multidimensional-root-finding
  73. http://www.gnu.org/software/gsl/doc/html/multiroots.html#overview
  74. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
  75. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
  76. http://www.gnu.org/software/gsl/doc/html/multiroots.html#initializing-the-solver
  77. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
  78. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
  79. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
  80. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
  81. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_alloc
  82. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_alloc
  83. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_alloc
  84. http://www.gnu.org/software/gsl/doc/html/err.html#c.GSL_ENOMEM
  85. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
  86. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
  87. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_alloc
  88. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_alloc
  89. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_alloc
  90. http://www.gnu.org/software/gsl/doc/html/err.html#c.GSL_ENOMEM
  91. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
  92. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_function
  93. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
  94. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_set
  95. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
  96. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_function_fdf
  97. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
  98. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_set
  99. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_set
 100. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_set
 101. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_set
 102. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_set
 103. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 104. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_free
 105. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 106. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_free
 107. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_free
 108. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 109. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_name
 110. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 111. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_name
 112. http://www.gnu.org/software/gsl/doc/html/multiroots.html#providing-the-function-to-solve
 113. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_function
 114. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_function
 115. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_function_fdf
 116. http://www.gnu.org/software/gsl/doc/html/multiroots.html#iteration
 117. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 118. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_iterate
 119. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 120. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_iterate
 121. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_iterate
 122. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 123. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 124. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_root
 125. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 126. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 127. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_root
 128. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_root
 129. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 130. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 131. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_f
 132. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 133. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 134. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_f
 135. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_f
 136. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 137. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver
 138. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_dx
 139. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 140. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver
 141. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_dx
 142. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_dx
 143. http://www.gnu.org/software/gsl/doc/html/multiroots.html#search-stopping-parameters
 144. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 145. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 146. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 147. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 148. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 149. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 150. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 151. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_delta
 152. http://www.gnu.org/software/gsl/doc/html/vectors.html#c.gsl_vector
 153. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_residual
 154. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_residual
 155. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_test_residual
 156. http://www.gnu.org/software/gsl/doc/html/multiroots.html#algorithms-using-derivatives
 157. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
 158. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
 159. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type.gsl_multiroot_fdfsolver_hybridsj
 160. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
 161. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type.gsl_multiroot_fdfsolver_hybridj
 162. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
 163. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type.gsl_multiroot_fdfsolver_newton
 164. http://www.gnu.org/software/gsl/doc/html/err.html#c.GSL_EDOM
 165. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type
 166. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_type.gsl_multiroot_fdfsolver_gnewton
 167. http://www.gnu.org/software/gsl/doc/html/multiroots.html#algorithms-without-derivatives
 168. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
 169. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
 170. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type.gsl_multiroot_fsolver_hybrids
 171. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
 172. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type.gsl_multiroot_fsolver_hybrid
 173. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
 174. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type.gsl_multiroot_fsolver_dnewton
 175. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type
 176. http://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fsolver_type.gsl_multiroot_fsolver_broyden
 177. http://www.gnu.org/software/gsl/doc/html/multiroots.html#examples
 178. http://www.gnu.org/software/gsl/doc/html/multiroots.html#references-and-further-reading
 179. http://www.gnu.org/software/gsl/doc/html/multimin.html
 180. http://www.gnu.org/software/gsl/doc/html/min.html
 181. https://www.sphinx-doc.org/
 182. https://github.com/readthedocs/sphinx_rtd_theme
 183. https://readthedocs.org/

   Hidden links:
 185. http://www.gnu.org/software/gsl/doc/html/index.html


Usage: http://www.kk-software.de/kklynxview/get/URL
e.g. http://www.kk-software.de/kklynxview/get/http://www.kk-software.de
Errormessages are in German, sorry ;-)